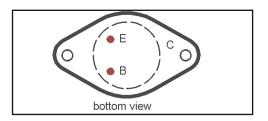
High-Voltage, High-Power Silicon N-P-N Power Transistor

RCA411

For Switching and Linear Applications in Military, Industrial and Commercial Equipment

Features:

- Maximum safe-area-of-operation curves
- Low saturation voltage: $V_{CE}^{(sat)} = 0.8V \text{ max}$
- High voltage rating: V_{CEO}(sus) = 300V
- High dissipation rating: $P_{\tau} = 125W$
- Steel Hermetic TO-3 Package


Applications:

- **■** Inverter
- **■** Deflection Circuits
- Switching Regulators
- High-Voltage Bridge Amplifiers
- **■** Ignition circuits

The RCA411 is an epitaxial silicon n-p-n power transistor utilizing a multiple-emitter-site structure. This device employs the popular TO-3 package.

Featuring high-breakdown voltage ratings and low saturation voltage values, the RCA411 is especially suitable for use in inverters, deflection circuits, switching regulators, high voltage bridge amplifiers, ignition circuits and other high-voltage switching applications.

Terminal Designations

JEDEC TO-3

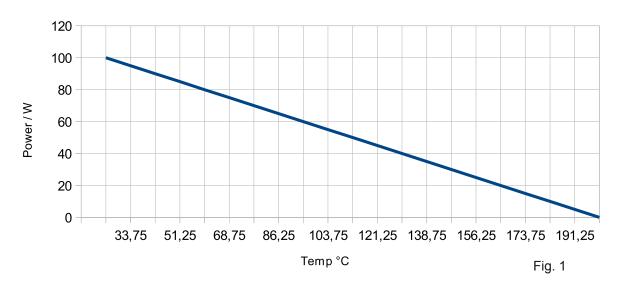
MAXIMUM RATINGS, Absolute-Maximum Values:

V _{CBO}	300	V	
V _{CEO} (sus)	300	V	
V _{EBO}	5	V	
I _c	7	А	
I _{CM}	10	А	
I _B	2	А	
P _T T _C ≤ 25°C , V _{CE} up to 75V	125	W	
P_T $T_c > 25$ °C, V_{CE} above 75V	see Fig. 1	W/°C	
$T_{stg}T_{J}$	-65 to +200	°C	
T_L At distance ≥ 1/32 in.(0.8mm) from seating plane for 10s max.	230	°C	

www.web-bcs.com Source: RCA SSD-220C (1981)

Electrical Characteristics, at Case Temperature $(T_C) = 25^{\circ}C$

Unless Otherwise Specified


Characteristic	Symbol	Test Conditions								
		DC DC Emitter or Collector Base Voltage Voltage (V) (V)		DC Current (A)		Limits		Units		
		V _{CE}	V_{EB}	V _{BE}	I _c	I _B	Min.	Тур.	Max.	
Collector Cutoff Current with base open	I _{CEO}	300					-	-	0.25	
with base-emitter junction reverse biased	I _{CEV}	300		1.5			-	-	0.25	mA
with base-emitter junction reverse biased & T _C 125°C	I _{CEV}	300		-1.5			-	-	0.5	
Emitter Cutoff Current	I _{EBO}		5				-	-	5.0	mA
DC Forward Current Transfer Ratio	h	5			1.0ª		30	-	90	
	h _{FE}	5			2.5ª		10	-	-	
Collector to Emitter Sustaining Voltage with base open	$V_{\text{CEO}}^{(\text{sus})\mathbf{b}}$				0.1		300b	-	-	V
Base to Emitter Saturation Voltage	V _{BE} (sat)				1.0ª	0.1	-	0.9	1.5	V
Collector to Emitter Saturation Voltage	V _{CE} (sat)				1.0ª	0.1	-	0.2	0.8	V
Second Breakdown Collector Current (With base forward biased) Pulse duration (non-repetitive) 1s	l _{S/b} c	150					0.3	-	-	Α
Gain Bandwidth Product	f_T	10			0.2		-	2.5	-	MHz
Switching Time Rise	f _r				1.0	0.1 (I _{B1}) -0.5 (I _{B2})	-	0.35	-	
Storage	f _s				1.0	0.1 (I _{B1}) -0.5 (I _{B2})	-	1.4	-	μs
Fall	f _f				1.0	0.1 (I _{B1}) -0.5 (I _{B2})	-	0.15	-	
Thermal Resistance (Junction to Case)	$R_{\scriptscriptstyle{ ext{ heta}JC}}$	10			5		-	-	1.4	°C/W

b CAUTION:

Pulsed: pulse duration \leq 350µs, duty factor = 2% The sustaining voltage $V_{CEO}^{(sus)}$ *MUST NOT* be measured on a curve tracer $I_{S/b}$ is defined as the current at which second breakdown occurs at a specified collector voltage with the emitter-base junction forward-biased for transistor operation in the active region

Source: RCA SSD-220C (1981) www.web-bcs.com

Power Dissipation

- continous collector current - peak collector current

> - collector-cutoff current with specified resistance between base and emitter - collector-cutoff current with specified circuit between base and emitter

- continous base current I_B

 I_{CM}

 I_{CER}

 I_{CEX}

- emitter-cutoff current, collector open I_{EBO}

- forward-bias, second break-down collector current I_{S/b}

 $\mathrm{V}_{\mathrm{CBO}}$ - collector-to-base voltage, emitter open V_{CEO} (sus) V_{CER} (sus) - collector-to-emitter voltage, base open

- collector-to-emitter sustaining voltage, base open

- collector-to-emitter sustaining voltage with specified resistance between base and emitter

 V_{EBO} - emitter-to-base voltage, collector open

- base-to-emitter voltage

V_{BE} V_{CE}sat - collector-to-emitter saturation voltage - common-base output capacitance C_{OB}

- open circuit common-base output capacitance C_{OBO}

- gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope) fT

 h_{FE} - dc forward-current transfer ratio

 $|\mathbf{h}_{\mathrm{fe}}|$ - magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio

- external base-to-emitter resistance R_{BE} $R_{_{\theta JC}}$ - thermal resistance, junction-to-case

- transistor dissipation at specified temperature

 $\begin{array}{c} t_{\rm f} \\ t_{\rm r} \\ t_{\rm s} \\ T_{\rm C} \\ T_{\rm stg} \\ T_{\rm J} \\ T_{\rm L} \end{array}$ - fall time - rise time - storage time - case temperature - storage temperature

- operating (junction) temperature - lead temperature during soldering

- conduction angle